Test Austin Style
Test of Austin’s Custom LaTeX Style
This document tests various custom commands and environments from austin.sty.
Custom Math Commands
Here are some custom math symbols:
-
Complex numbers: $\mathbb{C}$
-
Natural numbers: $\mathbb{N}$
-
Rational numbers: $\mathbb{Q}$
-
Real numbers: $\mathbb{R}$
-
Integers: $\mathbb{Z}$
Some custom operators: $\mathrm{cis}(\theta) = \cos(\theta) + i\sin(\theta)$
The least common multiple: $\mathrm{lcm}(12, 18) = 36$
Automorphism group: $\mathrm{Aut}(G)$
Custom Math Shortcuts
Cube root: $\sqrt[3]{27} = 3$
Floor and ceiling: $\left\lfloor 3.7 \right\rfloor = 3$ and $\left\lceil 3.2 \right\rceil = 4$
Boxed result: $\boxed{E = mc^2}$
Fraction shortcut: $\frac{a}{b} = \frac{a}{b}$
Vector notation: $\mathbf{v} = \begin{bmatrix}x \ y \ z\end{bmatrix}$
Theorem-Like Environments
Theorem:
If $f$ is continuous on $[a,b]$ and $F$ is an antiderivative of $f$, then \(\int_a^b{f(x) \, dx} = F(b) - F(a)\)
Lemma:
Every partially ordered set in which every chain has an upper bound contains at least one maximal element.
Corollary:
Every vector space has a basis.
Proposition:
For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$: \(|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|\)
Definition:
A group is a set $G$ together with a binary operation $\cdot: G \times G \to G$ satisfying:
Associativity: $(a \cdot b) \cdot c = a \cdot(b \cdot c)$
Identity: $\exists e \in G \ \text{s.t.} \ a \cdot e = e \cdot a = a$ for all $a \in G$
Inverses: For each $a \in G$, $\exists a^{-1} \in G \ \text{s.t.} \ a \cdot a^{-1} = a^{-1} \cdot a = e$
Example:
The symmetric group $S_n$ consists of all permutations of $n$ elements. It has order $n!$.
Remark:
The notation $\mathrm{Hom}(G, H)$ denotes the set of all homomorphisms from $G$ to $H$.
Probability and Statistics
Expected value: $\mathbb{E}{\left[X\right]} = \sum_{x} x \cdot P(X = x)$
Variance: $\text{Var}\left(X\right) = \mathbb{E}{\left[X^2\right]} - \mathbb{E}{\left[X\right]}^2$
Covariance: $\text{Cov}\left(X, Y\right) = \mathbb{E}{\left[XY\right]} - \mathbb{E}{\left[X\right]}\mathbb{E}{\left[Y\right]}$
Bernoulli distribution: $X \sim \text{Bern}\left(p\right)$
Binomial distribution: $Y \sim \text{Binom}\left(n, p\right)$
Code Listings
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
Problem Environment
Problem:
Prove that $\sqrt{2}$ is irrational.
Subproblem:
Assume $\sqrt{2} = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $\gcd(p, q) = 1$.
Subproblem:
Derive a contradiction.